Visualizing graphene based sheets by fluorescence quenching microscopy.

نویسندگان

  • Jaemyung Kim
  • Laura J Cote
  • Franklin Kim
  • Jiaxing Huang
چکیده

Graphene based sheets have stimulated great interest due to their superior mechanical, electrical, and thermal properties. A general visualization method that allows quick observation of these single atomic layers would be highly desirable as it can greatly facilitate sample evaluation and manipulation, and provide immediate feedback to improve synthesis and processing strategies. Here we report that graphene based sheets can be made highly visible under a fluorescence microscope by quenching the emission from a dye coating, which can be conveniently removed afterward by rinsing without disrupting the sheets. Current imaging techniques for graphene based sheets rely on the use of special substrates. In contrast, the fluorescence quenching mechanism is no longer limited by the type of substrate. Graphene, reduced graphene oxide, or even graphene oxide sheets deposited on arbitrary substrates can now be readily visualized with good contrast for layer counting. Direct observation of suspended sheets in solution was also demonstrated. The fluorescence quenching microscopy offers unprecedented imaging flexibility and could become a general tool for characterizing graphene based materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluorescence Quenching in Conjugated Polymers Blended with Reduced Graphitic Oxide

Conjugated polymers blended with graphene represent a possible approach for making organic bulk heterojunction solar cells. In this paper, the time-resolved fluorescence dynamics of poly(3-hexylthiophene2,5-diyl) (P3HT) and poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) blended with graphene microsheets derived from chemically reduced graphitic oxide are studied. Both poly...

متن کامل

Comparison of Anionic, Cationic and Nonionic Surfactants as Dispersing Agents for Graphene Based on the Fluorescence of Riboflavin

Fluorescence quenching is a valuable tool to gain insight about dynamic changes of fluorophores in complex systems. Graphene (G), a single-layered 2D nanomaterial with unique properties, was dispersed in surfactant aqueous solutions of different nature: non-ionic polyoxyethylene-23-lauryl ether (Brij L23), anionic sodium dodecylsulphate (SDS), and cationic hexadecyltrimethylammonium bromide (CT...

متن کامل

Distance-independent quenching of quantum dots by nanoscale-graphene in self-assembled sandwich immunoassay.

A promising one-step homogeneous fluoroimmunoassay based on nanoscale-graphene sheets as powerful fluorescence acceptors and CdTe quantum dots as vigorous donors was designed to detect trace biomarker protein with distance-independent quenching efficiency, which significantly broke the distance limit (100 Å) in traditional fluorescent biosensors.

متن کامل

Material processing of chemically modified graphene: some challenges and solutions.

Graphene-based sheets show promise for a variety of potential applications, and researchers in many scientific disciplines are interested in these materials. Although researchers have developed many ways of generating single atomic layer carbon sheets, chemical exfoliation of graphite powders to graphene oxide (GO) sheets followed by deoxygenation to form chemically modified graphene (CMG) offe...

متن کامل

Energy transfer from individual semiconductor nanocrystals to graphene.

Energy transfer from photoexcited zero-dimensional systems to metallic systems plays a prominent role in modern day materials science. A situation of particular interest concerns the interaction between a photoexcited dipole and an atomically thin metal. The recent discovery of graphene layers permits investigation of this phenomenon. Here we report a study of fluorescence from individual CdSe/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 132 1  شماره 

صفحات  -

تاریخ انتشار 2010